
Toy Takeover
Technical Design Document

v 1.0

By Paul King

1

Change Log
15/09/2021 V0.1 Started filling in all of the template sections

18/09/2021

30/09/2021

12/10/2021

15/10/2021

18/10/2021

v0.2

v0.3

v0.4

v0.5

v0.6

Filled in Asset list including the Unity C# scripts and some of the
game objects and prefabs.

Filled in the rest of the GameObject/prefabs section, inserted two
diagrams and updated the table of contents.

Updated the title page image.
Made updates to the mechanic's section.
Fixed some spelling and grammar errors
Added some additional solid objects to the asset list.
Add EnemySound to scripts section

Updated Ammo in the items section
Added Range enemy information to Artificial intelligence section

Inserted new diagrams for ranged enemy A.I.
Updated Information in the enemy A.I.
Updated weapons sections to match new weapon names
Updated enemy scripts in the “Scripts” section
Added “Taking Damage” paragraph to mechanics

v1.0 Converted document into PDF.

2

Table of Contents
Development Environment

Section 1: Game Overview
Game Overview

Technical Goals
Game Objects and Logic
Game Flow

Mechanics
Artificial Intelligence
Physics
Items
Game Flow
Levels
User Interface
Asset List
Technical Risks

Section 2: Asset List
Game Objects/Prefabs

Player
Solids
Enemies
Weapons
Items

Scripts
MonoBehaviours
GameManger
Player
Enemy
Item
GUI
Scriptable Objects

3

Development Environment
Game Engine: Unity 2021.1.10f1
IDE: Visual Studio 2019
Source Control procedures: Git, Github
Third-Party Libraries: UnityEngine
Other Software: Photoshop, Blender

Game Overview
Technical Goals
To create a first-person shooter in Unity running at a smooth frame rate with input from
keyboard and mouse as well as from a game controller

Game Objects and Logic
The game will contain a series of game objects created in the Unity Game Engine. Some
will be stored in the scene, others will be prefabs which will load at run time.

Player
The main game object will be a player that has an fps controller attached to it. A camera
will be attached to the player’s transform so that it moves with the player.

Wall
There will be walls located inside the level that no other objects can pass through. Several
different 3D models can be treated as walls.

Bullet
This is a projectile prefab that is instantiated whenever the player fires a gun. Once the
bullet is fired it will travel forward until it hits an object with a collider on it and then it is
destroyed.

Enemy
Enemies will be prefabs that spawn on a spawn point whenever a new enemy wave
begins. The enemies

Item
There are item prefabs placed throughout the level. When the player runs into an item it
triggers, removing the object from the scene and invoking a function that applies the effect
of that item.

4

Game Flow
When the game loads, the player will be taken to the main menu where they will see a
“start game”, “options” and “exit” button. After clicking “start game”, Unity will load the
level scene.

Diagram of Main game loop

While the level scene is running, waves of enemies will appear which the player will have
to defeat by destroying all the enemies using the gun weapon. When there are no more
enemies alive in the wave the game will load the next enemy wave and spawn all the
enemies in it.

After defeating the enemy wave a new series of item pickups will appear at their
appropriate location.

Once the player has defeated all enemies waves the game has been won. If the player runs
out of health at any point, then he/she dies, and the game has been lost.

5

Mechanics
While the game is running, there are several mechanics that the player can perform as long
as their character is still alive.

Player movement
The first of these mechanics is character movement. The player can move in four different
directions: forward, back, left and right. This will be controlled by invoking move() on the
ChracterController component. They can also rotate the camera using the mouse or right
thumbstick which changes which direction the character is facing.

Firing Weapons
One of the core mechanics is shooting. Whenever the camera rotates, so does the weapon
that the player is holding. When the player fires a projectile will move in a straight line from
the weapon until it hits something. If it is a rapid-firing weapon it will fire continuously with
a new bullet spawning over a time interval. If the player uses a laser weapon a ray will be
cast from the gun to the first thing it hits. This will be drawn on screen using the
LineRenderer.

Jumping & flying
Another core mechanic is lifting the player up into the air. This can be done in two ways; by
jumping and by flying around in a jetpack. When the player presses the jump button the
player will jump. If the player presses the jetpack button and there is no fuel left in the
jetpack then the jetpack will be used

When using the jetpack, the player will continue to hover around in the air until the
key/button is released or they run out of fuel. When this happens, they will fall until
colliding with the ground or a platform. the movement speed when moving around on the
jetpack will be based on lift, thrust and weight variables.

Taking damage
The player will have a health meter which they must keep above zero otherwise they die
Whenever the player collides with an enemy, damage will be dealt. The player will also
take damage if a melee enemy hits the player while in attack range or a projectile fired by a
ranged enemy hits the player. Another way of taking damage is from falling off the edge of
the level.

Collecting pickups
There are item prefabs placed throughout the level. When the player runs into an item it
triggers, removing the object from the scene and invoking a function that applies the effect
of that item.

Falling off the edge
The level will be set on an elevated platform such as a table or cardboard box. When the
player goes over the edge they will fall off until reaching the floor. At this point, the player
will lose health and be respawned back at the start position.

6

Artificial Intelligence
The enemies in the game will act as NavMesh agents that will use a navigation mesh that
has been baked into the level for pathfinding. When each enemy has been spawned it will
follow a path from its current location to the player location until it gets in attack
range.What the enemy A.I. does, will depend on the type of enemy being used.

Self destructing enemy
There will be a small, fast enemy that will follow the enemy until colliding and then get
destroyed on collision.

Melee enemy

There will also be a medium-sized enemy that will perform melee attacks on the enemy
once in range. This enemy will have 2 different states. A follow state and an attack state.
They will switch between the 2 states depending on the length of the vector between the
player and the enemy.

7

Ranged enemy
The will also be a large and slower-moving ranged enemy which will attack by firing
projectiles at the player. This enemy will draw a raycast between its current location and
the player location and while it is in follow state: If the player is in range and there is no
wall in the way between the enemy and the player, it will switch from the follow state to
attack state.

Below is the basic flow of how the A.I. for this enemy operates.

8

Physics
All physics in the game will be handled using the Unity Engine. Any object that needs to be
knocked around can be controlled using the RigidBody component.

Unity colliders will be used for collision detection with capsule colliders for the player and
enemies and box colliders for all other game objects. The Character Controller/RigidBody
component will be attached to both the player and the enemy game objects to detect
collisions with another object.

The game will include gravity that pushes the player back onto the ground. There will also
be the ability to jump as well as fly upon the jetpack against the engine’s gravity. To achieve
this a calculation will need to be performed based on the lift/drag etc.

If the player walks off the edge of the level they will fall down until colliding with a kill box
collider attached to the floor of the bedroom..

Items

Pickups
Items in the game will be placed at different locations in the level. When the player picks
up each item it will trigger its effect which depends on the type of item. A list of items is
shown below.

Ammo
This will increase the amount of ammo the player has to fire with. There will be three
different types of ammo pickups. Arrow pickups, machine gun ammo, pickups and laser
ammo pickup. Each of these ammo pickups will increase the ammo for that specific weapon

Health Pickup
This item increases the amount of health the player has if they are below maximum health.

Armour
This item adds armour to the character which acts as additional health. While the character
has armour equipped if they are damaged, they will lose armour instead of health.

Weapons
There are 3 different weapons that the player will use. A crossbow, a water gun, and a
laser gun.

Crossbow: Fires one projectile per press of the button/key
Water gun: continues to fire projectiles while the button/key is held down
Laser gun: This will use the physics raycast to send out a laser from the gun to the first
object it collides with. Any enemy that is intercepting with the laser will take damage.

9

Game Flow

‘Mission’ / ‘Level’ structure
The main level will be stored within the scene of a Unity Project. The scene will be loaded
when the player chooses to start the game from the main menu.

Objectives
The player must destroy all enemy waves without dying to complete the level. The HUD on
the GUI layer will tell the player which wave they are up to. Player health is also displayed
on the HUD.

Levels
The game will contain one level which is on a playmat located in a child’s bedroom.
Different levels will be made up of blocks with ramps connecting them. All walkable
locations will be baked into the Navigation Mesh.

User Interface

Menus
There will be a main menu at the start of the gaming and an options menu when the player
pauses the game. Menu items will include the following

Main Menu:
The main menu screen will contain the following buttons
Start Game: Starts a new game
Options: Goes to the options menu
Credits: Takes the player to a screen displaying the credits
Quit: Exits the unity project

Options Menu:
The options menu will contain the following GUI components
Volume Slider: Changes the volume of the sound effects and music
Brightness Slider: Changes
Fullscreen checkbox: Toggles between fullscreen and windowed mode
Back Button: Takes the player back to the previous menu

Pause Game Menu:
The pause game menu will contain the following GUI co

Camera
The camera used in the game will be a 3D perspective camera that is a child to the player
transform. When the player moves, so does the camera. When the player changes the
direction, they are facing using the mouse or controller joystick the camera rotates.

10

Controls
There will be two main different input modes for this game. Keyboard and mouse or game
controller. The following controls are listed below.

Mouse:
Horizontal Mouse Drag - Rotates camera on the y axis
Vertical Mouse Drag - Rotates camera on the x-axis
Left mouse button - Fire ammo
Right mouse button - Fire grappling gun (optional)
Mouse wheel - change weapon

Keyboard:
W or Up: Move forward
S or Down: Move backward
A or Left: Move sideways left
D or right: Move sideways right
Space: Jump
Horizontal mouse drag: change direction
Vertical mouse drag: Look up and down
Left mouse button: Fire weapon
Right-Click: Fly on Jetpack
Esc: Pauses the game and brings up the options menu

Game Controller:
Left joystick: Movement
Right joystick: Rotate camera
A/B: Jump
Left/Right bumpers: Switch between weapons
Right trigger: Fire weapon
Left trigger: Jetpack
Start/Pause: Pause
Select menu options: Up/down joystick

Technical Risks
The main technical risk is having every feature implemented by one programmer and
having it all working. Specific difficulties programming this game may include the following.

● Having a game controller work with the game as well as the keyboard and mouse
● Having the camera rotate up and down without rotating the player
● Controlling the physics on the jetpack and/or grappling gun
● Ensuring that enemy agents don’t end up blocking each other when moving towards

the player. This may only happen if there are too many enemies is one of the waves
● Getting the A.I. on 2 different types of enemies working correctly.

11

Asset List
Below is a list of all of the Game object prefabs and scripts needed to make the game run.

Game Objects/Prefabs
Player
This game object contains a rigid body component, the player scripts and several children
game objects

Children include
● Camera
● Capsule
● Weapons

Solid objects
These are 3D models with a material and a collider attached to them. They don’t do
anything other than blocking the characters or acting as the ground for them to move on.

Walkable objects
These are game objects in the level that the player walks on and collides with. They will
also be baked into the NavMesh so that the enemies can use them. If these objects contain
a slope then the player and enemies will walk up the slope, if they are vertical then they
will block the characters.

● PlayMat
● Rectangular block vertical
● Rectangular block horizontal
● Rectangular Arch block
● Ramp small
● Ramp large
● Cylinder block

12

Background objects
These are other 3d objects that are not part of the level but are visible to the player. They
are also solid, preventing the player from passing through them. These include the
following

● Toybox (or cardboard box)
● Room

○ Floor
○ Walls
○ Ceiling

● Light
● Chair
● Poster

● Bed
● Door
● Bookshelf
● Desk
● Computer
● Bedside Table
● Alarm clock
● Lamp

Enemies
All of the prefabs below will contain the NavMesh agent component and EnemyController
script.

Toy Car
Small in size and fast but has low health. This enemy deals a high amount of damage on
impact but is destroyed as soon as it collides with the player.

Soldier
Medium in size and moves at medium speed and has medium health. This enemy will
follow the player until it is in attack range.

Robot
Large in size and has large health but moves slowly. The enemy will also have a shield at
the front of it. If the projectiles/lasers fired by the enemy collide with the shield, the enemy
will take less damage than when being hit on other parts of the body.

Weapons
A different 3D model will be used for each type of gun. All of the weapons will be models
that are placed in front of the player’s camera and will switch on and off depending on
which weapon the player has selected. Below are the different game objects that will be
used for weapons.

● Rifle
● Machine gun
● Laser Gun

13

Items
These are prefabs that will be tagged as “collectable” and will have the ItemController
script attached to them.

● Ammo pickup
● Jetpack fuel
● Health pack
● Armour

GUI
The user interface will include the main menu screen, a couple of additional dialogs and the
heads up display (HUD) that appears in the game.

Menus

Below is a list of game objects that will appear on the canvas for each menu in the game

Main Menu
● Title logo
● Background
● Company logo
● Start Game button
● Options button
● Credits button
● Quit button

Options Menu
● Dialog background
● Dialog title
● Volume label
● Volume slider
● Brightness label
● Brightness slider
● Fullscreen label
● Fullscreen checkbox
● Back button

Pause Dialogue
● Pause dialogue
● Dialogue title
● Resume button
● Options button
● End game button

Note: All buttons on the menu will have a function attached to them from Unity’s onClick
event.

HUD
This is the UI that appears on the screen while playing the game

● Health label and health meter
● Fuel Label and jetpack meter
● Armour label and armour mater
● Wave label and wave number
● Time Elapsed
● Aiming crosshair

14

Scripts
Monobehaviour classes

GameManager Object
GameManager: Controls the main flow of the game. Will contain game states for Init,
running, paused and dead. This class will call functions on the spawn manager. The
variable for gravity will also be stored here.

This class will also keep track of all the enemies' health and destroy them when they reach
zero.

SpawnManager: Takes an array of EnemyWave scriptable objects and spawns them all
sequentially. When the game begins it will iterate through the SpawnedEnemy objects and
instantiate the appropriate enemy prefab for each one.

The script also contains a variable for the amount enemies left in the wave which decreases
each time one is destroyed. If the number of enemies remaining reaches zero, then it will
spawn the next wave.

This script also spawns new item pickups when an enemy wave is defeated.

GUIController: Updates the information on the Heads up Display (HUD) at runtime

Canvas
GUIManager: Handle the button click of all menus in the game and update the values on
the HUD when the GameManager tells it to.

Player Gameobject
PlayerController: Stores all of the player’s main variables. This includes values for player
max health, current health, current fuel, max fuel, armour, selected weapon and the amount
of ammo in each weapon. Any changes to current health, fuel, ammo or armour such as
taking damage will be controlled by this script. It will also send the player back to the
starting point after falling off the level as well as any other collision checks that need to be
made. If the player runs out of health it will then change the game state by calling the
GameManager script.

PlayerMovement: Controls all player movement in the game from player input using a
CharacterController component. Still will include running as well as jumping and using the
jetpack. Variables include movement speed, jump height, jetpack lift speed.

GunController: Firing each shot with the weapon is controlled in this script.

15

PlayerSound: Takes sound objects for all different sound effects to be played by the
player’s audio source and plays them at the correct time.

Enemy GameObject
EnemyController: Takes an enemy scriptable object. The enemies current health is stored
here. If the enemy collides with the player’s bullet or laser damage is applied to their
health.

This script also contains the code needed to move enemy agents along the NavMesh
towards the player while it is in “follow” state. Enemy animations will also be controlled on
this script by sending parameters to the enemy's animator. Melee enemies will have 2
different states: A follow attack state, while ranged enemies will have a follow, attack and
aim state.

SelfDestuctingEnemy: Attached to the car enemy. When the box collider trigger collides
with the player the card game object will be destroyed. An explosion particle system will
then be played and damage will be dealt to the player’s health.

MeleeEnemyAI: Attached to the soldier enemy. It contains values for the attack range and
whether or not it is destroyed on the condition. When the enemy is in attack range it will
switch to attack state and if the player moves out of range it will change back to follow
state. When in attack state the enemy will deal damage to the player every x amount of
frames while the player is still in range. This type of enemy will have an attack speed value.

RangeEnemyAI: Attached to the robot enemy. This script contains all the conditions that
the ranged enemy makes when transitioning between following the player. A raycast will
be drawn at all times from the ranged enemy to the player to check if it can see the player.
If it can, the enemy will change to an aim state where it will rotate itself as well as the gun
to face the player. When the gun is facing the player the enemy will switch to attack state
where it will fire projectiles continuously at the player with a time delay between each one.

Public values for this script will be the view distance, firing delay, enemy turn speed and
aiming speed.

EnemySound: Takes sound objects for all the different sound effects to be played by the
enemy’s audio source and plays them at the correct time.

Projectile
ProjectileController: Controls what the bullet does after being instantiated.

Item
ItemController: Takes an item scriptable object. The variables in this script will be accessed
by the PlayerController.

16

GUI
MenuController: Contains a series of functions that handle the clicking of different buttons
on the

ScriptableObject classes
Weapon: Contains values for damage and maximum ammo
MachineGun: Extends weapon class. Contains the value for firing rate.
LaserGun: Extends weapon class. Contains the value for damage rate.
Enemy: Contains variables for max health, movement speed, attack rate and damage per hit
RangedEnemy: Extends enemy class and includes a variable for attack range
EnemyWave: Contains an array of type SpawnedEnemy which contains the variables for
the enemy prefab game object and the spawn point game object
Item: Contains an Enum for different values to adjust and value for modification

17

